Discriminative models

Machine Learning

Hamid R Rabiee – Zahra Dehghanian Spring 2025

Probabilistic classifiers

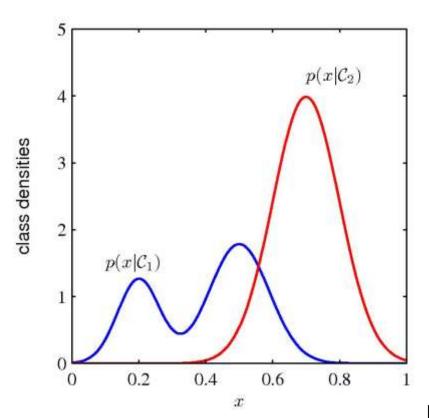
- How can we find the probabilities required in the Bayes decision rule?
- Probabilistic classification approaches can be divided in two main categories:
 - Generative
 - Estimate pdf $p(x, C_k)$ for each class C_k and then use it to find $p(C_k|x)$
 - or alternatively estimate both pdf $p(x|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$ to find $p(\mathcal{C}_k|x)$
 - Discriminative
 - Directly estimate $p(\mathcal{C}_k|x)$ for each class \mathcal{C}_k

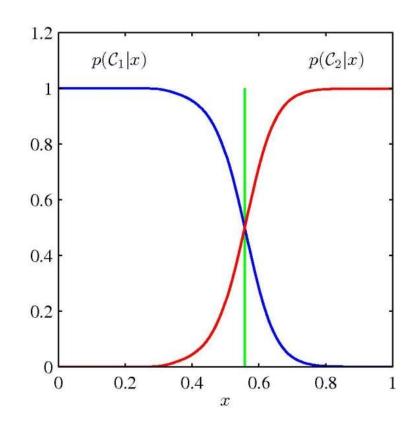
Generative approach

- Inference stage
 - Determine class conditional densities $p(x|\mathcal{C}_k)$ and priors $p(\mathcal{C}_k)$
 - Use the Bayes theorem to find $p(\mathcal{C}_k|x)$

- Decision stage: After learning the model (inference stage), make optimal class assignment for new input
 - if $p(\mathcal{C}_i|\mathbf{x}) > p(\mathcal{C}_i|\mathbf{x}) \ \forall j \neq i$ then decide \mathcal{C}_i

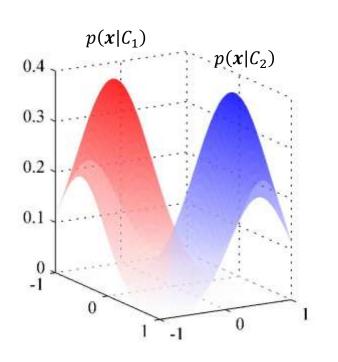
Discriminative vs. generative approach

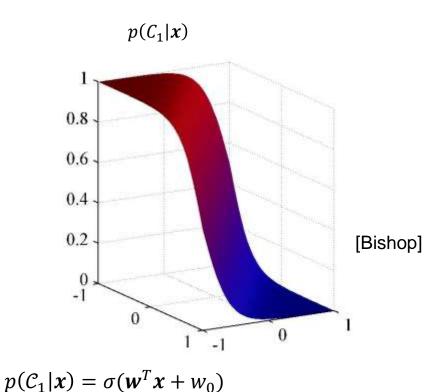




[Bishop]

Class conditional densities vs. posterior





$$\sigma(z) = \frac{1}{1 + \exp(z)}$$

$$\mathbf{w} = \mathbf{\Sigma}^{-1} (\mathbf{\mu}_1 - \mathbf{\mu}_2)$$

$$w_0 = -\frac{1}{2} \mathbf{\mu}_1^T \mathbf{\Sigma}^{-1} \mathbf{\mu}_1 + \frac{1}{2} \mathbf{\mu}_2^T \mathbf{\Sigma}^{-1} \mathbf{\mu}_2 + \ln \frac{p(C_1)}{p(C_2)}$$

Probabilistic discriminant functions

- **Discriminant functions**: A popular way of representing a classifier
 - A discriminant function $f_i(x)$ for each class C_i (i = 1, ..., K):
 - x is assigned to class C_i if:

$$f_i(\mathbf{x}) > f_j(\mathbf{x}) \ \forall j \neq i$$

- Representing Bayesian classifier using discriminant functions:
 - Classifier minimizing error rate: $f_i(x) = P(C_i|x)$
 - Classifier minimizing risk: $f_i(x) = -\sum_{j=1}^K L_{ij} p(\mathcal{C}_j | x)$

Discriminative approach

- Inference stage
 - Determine the posterior class probabilities $P(C_k|x)$ directly
- <u>Decision stage</u>: After learning the model (inference stage), make optimal class assignment for new input
 - if $P(C_i|x) > P(C_j|x) \ \forall j \neq i$ then decide C_i

Discriminative approach: logistic regression

K = 2

- More general than discriminant functions:
 - f(x; w) predicts posterior probabilities P(y = 1 | x)

$$f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

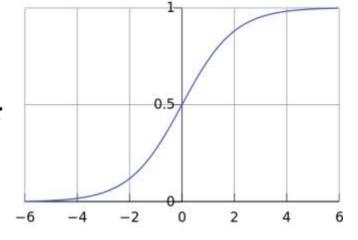
 $\sigma(.)$ is an activation function

$$\mathbf{x} = [1, x_1, ..., x_d]$$

 $\mathbf{w} = [w_0, w_1, ..., w_d]$

• Sigmoid (logistic) function

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$



Logistic regression

• f(x; w): probability that y = 1 given x (parameterized by w)

$$P(y = 1 | x; w) = f(x; w)$$

$$y \in \{0,1\}$$

$$P(y = 0 | x; w) = 1 - f(x; w)$$

$$f(x; w) = \sigma(w^{T}x)$$

$$0 \le f(x; w) \le 1$$
estimated probability of $y = 1$ on input x

- Example: Cancer (Malignant, Benign)
 - f(x; w) = 0.7
 - ▶ 70% chance of tumor being malignant

K=2

Logistic regression: Decision surface

• Decision surface f(x; w) = constant

•
$$f(x; w) = \sigma(w^T x) = \frac{1}{1 + e^{-(w^T x)}} = 0.5$$

• Decision surfaces are linear functions of x

if
$$f(x; w) \ge 0.5$$
 then $y = 1$ else $y = 0$

Equivalent to

if
$$\mathbf{w}^T \mathbf{x} + w_0 \ge 0$$
 then $y = 1$ else $y = 0$

Logistic regression: ML estimation

Maximum (conditional) log likelihood:

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmax}} \log \prod_{i=1}^{n} p(y^{(i)} | \boldsymbol{w}, \boldsymbol{x}^{(i)})$$

$$p(y^{(i)}|\mathbf{w}, \mathbf{x}^{(i)}) = f(\mathbf{x}^{(i)}; \mathbf{w})^{y^{(i)}} (1 - f(\mathbf{x}^{(i)}; \mathbf{w}))^{(1-y^{(i)})}$$

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{w}) = \sum_{i=1}^{n} \left[y^{(i)} \log \left(f(\mathbf{x}^{(i)}; \mathbf{w}) \right) + (1 - y^{(i)}) \log \left(1 - f(\mathbf{x}^{(i)}; \mathbf{w}) \right) \right]$$

Logistic regression: cost function

 $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} J(\boldsymbol{w})$

$$J(\mathbf{w}) = -\sum_{i=1}^{n} \log p(y^{(i)}|\mathbf{w}, \mathbf{x}^{(i)})$$

= $\sum_{i=1}^{n} -y^{(i)} \log (f(\mathbf{x}^{(i)}; \mathbf{w})) - (1 - y^{(i)}) \log (1 - f(\mathbf{x}^{(i)}; \mathbf{w}))$

No closed form solution for

$$\nabla_{\mathbf{w}}J(\mathbf{w})=0$$

• However J(w) is convex.

Logistic regression: Gradient descent

lacktriangle

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \nabla_{\!\!\mathbf{w}} J(\mathbf{w}^t)$$

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \sum_{i=1}^{n} (f(\mathbf{x}^{(i)}; \mathbf{w}) - y^{(i)})\mathbf{x}^{(i)}$$

Is it similar to gradient of SSE for linear regression?

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \sum_{i=1}^{n} (\mathbf{w}^{T} \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) \mathbf{x}^{(i)}$$

Logistic regression: loss function

$$Loss(y, f(x; w)) = -y \times \log(f(x; w)) - (1 - y) \times \log(1 - f(x; w))$$

Since
$$y = 1$$
 or $y = 0 \Rightarrow Loss(y, f(x; w)) = \begin{cases} -\log(f(x; w)) & \text{if } y = 1 \\ -\log(1 - f(x; w)) & \text{if } y = 0 \end{cases}$

How is it related to zero-one loss?

$$Loss(y, \hat{y}) = \begin{cases} 1 & y \neq \hat{y} \\ 0 & y = \hat{y} \end{cases}$$

$$f(\mathbf{x}; \mathbf{w}) = \frac{1}{1 + exp(-\mathbf{w}^T \mathbf{x})}$$

Logistic regression: cost function (summary)

- Logistic Regression (LR) has a more proper cost function for classification than SSE and Perceptron
- Why is the cost function of LR also more suitable than?

$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}; \mathbf{w}) \right)^{2}$$

where
$$f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

- The conditional distribution p(y|x; w) in the classification problem is not Gaussian (it is Bernoulli)
- The cost function of LR is convex

Posterior probabilities

• Two-class: $p(C_k|x)$ can be written as a logistic sigmoid for a wide choice of $p(x|C_k)$ distributions

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(a(\mathbf{x})) = \frac{1}{1 + \exp(-a(\mathbf{x}))}$$

• Multi-class: $p(\mathcal{C}_k|\mathbf{x})$ can be written as a soft-max for a wide choice of $p(\mathbf{x}|\mathcal{C}_k)$

$$p(C_k|\mathbf{x}) = \frac{\exp(a_k(\mathbf{x}))}{\sum_{j=1}^K \exp(a_j(\mathbf{x}))}$$

Multi-class logistic regression

- For each class k, $f_k(x; W)$ predicts the probability of y = k
 - i.e., P(y = k | x, W)
- On a new input x, to make a prediction, pick the class that maximizes $f_k(x; W)$:

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{k=1,\dots,K} f_k(\mathbf{x})$$

if
$$f_k(x) > f_j(x)$$
 $\forall j \neq k$ then decide C_k

Multi-class logistic regression

$$K > 2$$

 $y \in \{1, 2, ..., K\}$

$$f_k(\mathbf{x}; \mathbf{W}) = p(y = k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k^T \mathbf{x})}{\sum_{j=1}^K \exp(\mathbf{w}_j^T \mathbf{x})}$$

- Normalized exponential (aka softmax)
 - If $\mathbf{w}_k^T \mathbf{x} \gg \mathbf{w}_j^T \mathbf{x}$ for all $j \neq k$ then $p(C_k | \mathbf{x}) \simeq 1$, $p(C_j | \mathbf{x}) \simeq 0$

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_{j=1}^{K} p(\mathbf{x}|C_j)p(C_j)}$$

Logistic regression: multi-class

$$\widehat{\boldsymbol{W}} = \underset{\boldsymbol{W}}{\operatorname{argmin}} J(\boldsymbol{W})$$

$$J(\boldsymbol{W}) = -\log \prod_{i=1}^{n} p(\boldsymbol{y}^{(i)} | \boldsymbol{x}^{(i)}, \boldsymbol{W})$$

$$= -\log \prod_{i=1}^{n} \prod_{k=1}^{K} f_k(\boldsymbol{x}^{(i)}; \boldsymbol{W})^{\boldsymbol{y}_k^{(i)}}$$

$$= -\sum_{i=1}^{n} \sum_{k=1}^{K} y_k^{(i)} \log (f_k(\boldsymbol{x}^{(i)}; \boldsymbol{W})) \qquad \boldsymbol{W} = [\boldsymbol{W}_1 \quad \cdots \quad \boldsymbol{W}_K]$$

 \mathbf{y} is a vector of length K (1-of-K coding) e.g., $\mathbf{y} = [0,0,1,0]^T$ when the target class is C_3

$$\mathbf{Y} = \begin{bmatrix} \mathbf{y}^{(1)} \\ \vdots \\ \mathbf{y}^{(n)} \end{bmatrix} = \begin{bmatrix} y_1^{(1)} & \cdots & y_K^{(1)} \\ \vdots & \ddots & \vdots \\ y_1^{(n)} & \cdots & y_K^{(n)} \end{bmatrix}$$

Logistic regression: multi-class

•

$$\boldsymbol{w}_j^{t+1} = \boldsymbol{w}_j^t - \eta \nabla_{\boldsymbol{W}} J(\boldsymbol{W}^t)$$

$$\nabla_{\boldsymbol{w}_{j}}J(\boldsymbol{W}) = \sum_{i=1}^{n} \left(f_{j}(\boldsymbol{x}^{(i)}; \boldsymbol{W}) - y_{j}^{(i)} \right) \boldsymbol{x}^{(i)}$$

 We usually consider also a regularization term and the gradient will be

$$\nabla_{\mathbf{w}_j} J(\mathbf{W}) = \lambda \mathbf{W} + \sum_{i=1}^n \left(f_j(\mathbf{x}^{(i)}; \mathbf{W}) - y_j^{(i)} \right) \mathbf{x}^{(i)}$$

Log-odds Ratio

• Optimal rule $y = arg \max_{c} p(t = c|x)$ is equivalent to

$$y = c \Leftrightarrow \frac{p(t = c|x)}{p(t = j|x)} \ge 1 \quad \forall j \ne c$$
 $\Leftrightarrow \log \frac{p(t = c|x)}{p(t = j|x)} \ge 0 \quad \forall j \ne c$

For the binary case

$$y = 1 \Leftrightarrow \log \frac{p(t=1|x)}{p(t=0|x)} \ge 0$$

Logistic Regression (LR): summary

LR is a linear classifier

- LR optimization problem is obtained by maximum likelihood
 - when assuming Bernoulli distribution for conditional probabilities whose mean is $\frac{1}{1+e^{-(w^Tx)}}$
- No closed-form solution for its optimization problem
 - But convex cost function and global optimum can be found by gradient ascent

Discriminative vs. generative: number of parameters

- d-dimensional feature space
- Logistic regression: d+1 parameters
 - $\mathbf{w} = (w_0, w_1, ..., w_d)$
- Generative approach:
 - Gaussian class-conditionals with shared covariance matrix
 - 2d parameters for means
 - d(d+1)/2 parameters for shared covariance matrix
 - one parameter for class prior $p(C_1)$.
- But LR is more robust, less sensitive to incorrect modeling assumptions

Summary of alternatives

Generative

- Most demanding, because it finds the joint distribution $p(x, C_k)$
- Usually needs a large training set to find $p(x|\mathcal{C}_k)$
- ▶ Can find $p(x) \Rightarrow$ Outlier or novelty detection

Discriminative

- Specifies what is really needed (i.e., $p(C_k|x)$)
- More computationally efficient

Feed back

? https://forms.gle/vKRbyVVsWRKcZuqr8

Resources

- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 4.2-4.3.
- Course CE-717, Dr. M.Soleymani

